
Sol-Assignment 5 - Equations differentielles ordinaires

May 27, 2025

1 Assignment 5: Èquations différentielles ordinaires
Avant de voir le code disponible de ce test et avant de commencer à rédiger vos
réponses, prenez le temps de réfléchir à la manière dont vous pouvez organiser le
travail.

• Pensez à quelles parties du test utiliseront des fonctions écrites/résultats obtenus
dans les parties précédentes.

• Réfléchissez à la structure de votre code (vous pouvez faire un brouillon sur
papier).

• Réfléchissez aux sections du cours qui vous seront utiles pour l’analyse de vos
résultats.

Dans l’intervalle [0, 𝑇] avec 𝑇 = 8, on considère le système linéaire d’équations différentielles
ordinaires (EDO) suivante

⎧{
⎨{⎩

𝑦′
1(𝑡) = 𝑦1(𝑡) − 2𝑦2(𝑡) + 𝑒

𝑡
5𝑇

𝑦′
2(𝑡) = 9𝑦1(𝑡) − 10𝑦2(𝑡) − 𝑒

𝑡
5𝑇

En posant les conditions initiales 𝑦1(0) = 1, 𝑦2(0) = 1, ça s’écrit sous la forme

{y′(𝑡) = 𝐴y(𝑡) + b(𝑡) pour 𝑡 ∈ (0, 𝑇] ,
y(0) = y0 ,

où

y(𝑡) = [𝑦1(𝑡)
𝑦2(𝑡)] , 𝐴 = [1 −2

9 −10] , b(𝑡) = 𝑒
𝑡

5𝑇 [1
−1] , y0 = [1

1] .

Soit ℎ > 0 le pas de temps. Pour 𝑛 ∈ ℕ, on pose 𝑡𝑛 = 𝑛ℎ, b𝑛 = b(𝑡𝑛) et on désigne par u𝑛 une
valeur approchée de la solution exacte y(𝑡𝑛) au temps 𝑡𝑛.

[1]: import numpy as np
from scipy.linalg import eig
from scipy.integrate import simpson

import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection

1

import matplotlib as mpl

from ODESystemLib import forwardEulerSystem, backwardEulerSystem

np.set_printoptions(precision=4, suppress=True, linewidth=120)

[2]: # ODE problem setup

t0 = 0
T = 8
tsp = [t0, T]

REMARK: to be consistent with the implementation of the methods,
A and b are defined as time-dependent functions,
even if in this case they are constant
A = lambda t : np.array([[1, -2], [9 , -10]])
b = lambda t : np.array([np.exp(t/(5*T)), -np.exp(t/(5*T))])
f = lambda t, x : A(t)@ x + b(t)

y0 = np.array([1, 1])

1.1 Partie 1
D’abord, on essaie résoudre le système d’EDO à l’aide de la méthode d’Euler progressive.

Sur la base de la théorie vue au cours, determiner le pas de temps maximale ℎ∗ > 0 pour lequel la
méthode d’Euler progressive est stable. Justifier la réponse. (Commentaire 1)

Résoudre le systeme d’EDO pour ℎ = 0.1ℎ∗, ℎ = 0.9ℎ∗ et ℎ = ℎ∗, en utilisant la fonction suivante
(disponible dans ODESystemLib.py)

def forwardEulerSystem(fun, interval, y0, N) :
""" Solve ordinary differential equations using the forward Euler method.

Inputs: [fun, interval, y0, N]
fun : right-hand side term. It must be a callable (e.g. function, lambda),

that takes time (t) and solution (u) in input.
interval: integration interval, list of the form [t0, T].
y0: initial condition, list or numpy array.
N: number of discrete timesteps

Outputs: [t, u]
t : vector of discrete time instants where the solution is approximated.
u : solution approximation at the discrete time instants.

"""

Dessiner le comportement des deux composantes de la solution dans le temps et donner un com-
mentaire sur la base des résultats obtenus. (Commentaire 2)

2

[3]: lk, _ = eig(A(0))
print(f"The eigenvalues of A are: {lk}")

h_ref = 2 / np.max(np.abs(lk))

The eigenvalues of A are: [-1.+0.j -8.+0.j]

1.1.1 Commentaire 1

La méthode d’Euler progressive est explicite – il n’y a pas de système linéaire à résoudre – mais
par contre elle est seulement conditionellement stable.

Dans notre cas, les valeurs propres de 𝐴 sont 𝜆1 = −1 et 𝜆2 = −8; elles sont bien négatives, donc
la condition de stabilité sur ℎ s’applique: comme 𝜌(𝐴) = 8, la condition de stabilité nous donne

ℎ < ℎ∗ = 1
4.

[4]: prop = 0.1
Nh = int(T/(prop*h_ref))
t01, u01 = forwardEulerSystem(f, tsp, y0, Nh)

prop = 0.9
Nh = int(T/(prop*h_ref))
t09, u09 = forwardEulerSystem(f, tsp, y0, Nh)

prop = 1.0
Nh = int(T/(prop*h_ref))
t10, u10 = forwardEulerSystem(f, tsp, y0, Nh)

prop = 2
Nh = int(T/(prop*h_ref))
t20, u20 = forwardEulerSystem(f, tsp, y0, Nh)

[5]: fig, axs = plt.subplots(1, 4, sharey=False, figsize=(13,5))

axs[0].plot(t01, u01[0,:], '-o')
axs[0].plot(t01, u01[1,:], '-o')
axs[0].set_title(r"$h = 0.1 \ h^*$")

axs[1].plot(t09, u09[0,:], '-o')
axs[1].plot(t09, u09[1,:], '-o')
axs[1].set_title(r"$h = 0.9 \ h^*$")

axs[2].plot(t10, u10[0,:], '-o')
axs[2].plot(t10, u10[1,:], '-o')
axs[2].set_title(r"$h = h^*$")

axs[3].plot(t20, u20[0,:], '-o')

3

axs[3].plot(t20, u20[1,:], '-o')
axs[3].set_title(r"$h = 2 \ h^*$")

for ax in axs:
ax.set_xlabel('t', fontsize=16)
ax.set_ylabel('u_n', fontsize=16)
ax.legend(['u_1', 'u_2'], fontsize=16)
ax.grid(which='major', linestyle='--', linewidth=1)

plt.tight_layout()
plt.show()

[6]: fig, axs = plt.subplots(1, 4, sharey=False, figsize=(13,5))

def plot_state(t, u, ax, title):
segments = np.concatenate([u.T[:-1, None], u.T[1:, None]], axis=1)
norm = plt.Normalize(t0, T)
lc = LineCollection(segments, cmap='plasma', norm=norm)
lc.set_array(t)
lc.set_linewidth(2)
line = ax.add_collection(lc)

ax.set_xlim(min(u[0]) - 0.05, max(u[0]) + 0.05)
ax.set_ylim(min(u[1]) - 0.05, max(u[1]) + 0.05)
ax.set_title(title)
ax.set_xlabel('u_1', fontsize=16)
ax.set_ylabel('u_2', fontsize=16)
ax.grid(which='major', linestyle='--', linewidth=1)

return

plot_state(t01, u01, axs[0], r"$h = 0.1 \ h^*$")

4

plot_state(t09, u09, axs[1], r"$h = 0.9 \ h^*$")
plot_state(t10, u10, axs[2], r"$h = h^*$")
plot_state(t20, u20, axs[3], r"$h = 2 \ h^*$")

Add a shared colorbar outside the figure
cbar_ax = fig.add_axes([0.92, 0.15, 0.02, 0.7])
norm = plt.Normalize(t0, T)
sm = mpl.cm.ScalarMappable(cmap="plasma", norm=norm)
sm.set_array([])
cbar = fig.colorbar(sm, cax=cbar_ax)
cbar.set_label('Time', fontsize=16)

fig.tight_layout(rect=[0, 0, 0.9, 1])
plt.show()

/tmp/ipykernel_110650/3983593375.py:33: UserWarning: This figure includes Axes
that are not compatible with tight_layout, so results might be incorrect.

fig.tight_layout(rect=[0, 0, 0.9, 1])

1.1.2 Commentaire 2

On observe que la solution calculée à l’aide de la méthode d’Euler progressive ne présente pas
d’oscillations si la valeur de ℎ est suffisamment petite, par exemple ℎ = 0.1 ℎ∗. Cependant,
des oscillations numériques commencent à apparaître si ℎ s’approche de ℎ∗, par exemple pour
ℎ = 0.9 ℎ∗, même si celles-ci s’atténuent à mesure que la solution évolue dans le temps. Lorsque
ℎ = ℎ∗, l’amplitude des oscillations reste constante, et si ℎ > ℎ∗ (par exemple ℎ = 2 ℎ∗), les
oscillations s’amplifient et la solution prend très rapidement des valeurs très élevées.

1.2 Partie 2
Répeter la Partie 1, mais en considerant la méthode d’Euler rétrograde.

Pour approximer numeriquement la solution, la fonction suivante est mise à disposition dans la

5

librairie ODESystemLib.py:

def backwardEulerSystem(A, b, interval, y0, N) :
""" Solve ordinary differential equations using the backward Euler method.

NOTE: this method is limited to the case of an affine right-hand side of the form
f(t,x) = A(t)x + b(t).

Inputs: [A, b, interval, y0, N]
A : callable (e.g. function, lambda), returning the matrix A at a given time instant.
b : callable (e.g. function, lambda), returning the vector b at a given time instant.
interval : integration interval, list of the form [t0, T].
y0 : initial condition, list or numpy array.
N : number of discrete timesteps

Outputs: [t, u]
t : vector of discrete time instants where the solution is approximated.
u : solution approximation at the discrete time instants.

"""

Donner un commentaire sur les résultats obtenus. En particulier, qu’est qu’on peut dire par rapport
à la stabilité de cette méthode? (Commentaire 3)

[7]: prop = 0.1
Nh = int(T/(prop*h_ref))
t01, u01 = backwardEulerSystem(A, b, tsp, y0, Nh)

prop = 0.9
Nh = int(T/(prop*h_ref))
t09, u09 = backwardEulerSystem(A, b, tsp, y0, Nh)

prop = 1.0
Nh = int(T/(prop*h_ref))
t10, u10 = backwardEulerSystem(A, b, tsp, y0, Nh)

prop = 2
Nh = int(T/(prop*h_ref))
t20, u20 = backwardEulerSystem(A, b, tsp, y0, Nh)

[8]: fig, axs = plt.subplots(1, 4, sharey=True, figsize=(13,5))

axs[0].plot(t01, u01[0,:], '-o')
axs[0].plot(t01, u01[1,:], '-o')
axs[0].set_title(r"$h = 0.1 \ h^*$")

axs[1].plot(t09, u09[0,:], '-o')

6

axs[1].plot(t09, u09[1,:], '-o')
axs[1].set_title(r"$h = 0.9 \ h^*$")

axs[2].plot(t10, u10[0,:], '-o')
axs[2].plot(t10, u10[1,:], '-o')
axs[2].set_title(r"$h = h^*$")

axs[3].plot(t20, u20[0,:], '-o')
axs[3].plot(t20, u20[1,:], '-o')
axs[3].set_title(r"$h = 2 \ h^*$")

for ax in axs:
ax.set_xlabel('t', fontsize=16)
ax.set_ylabel('u_n', fontsize=16)
ax.legend(['u_1', 'u_2'], fontsize=16)
ax.grid(which='major', linestyle='--', linewidth=1)

plt.tight_layout()
plt.show()

1.2.1 Commentaire 3

La méthode d’Euler rétrograde est inconditionallement stable, c-à-d elle est stable pour toute valeur
de ℎ > 0. Ceci peut être déduit en régardant les solutions obtenues, qui sont accurées et qui ne
presentent pas d’oscillations, même pour des valeurs de ℎ assez élevées (e.g. ℎ = 2 < ℎ∗).

1.3 Partie 3
Ècrire une fonction qui implemente la méthode de Crank-Nicholson, pour résoudre des équations
différentielles ordinaires linéaires, c-à-d avec 𝑓(𝑡, 𝑥) = 𝐴(𝑡)𝑥 + 𝑏(𝑡). La fonction doit avoir la
structure suivante:

7

def CrankNicholsonSystem(A, b, interval, y0, N) :
""" Solve ordinary differential equations using the Crank-Nicholson method.

NOTE: this method is limited to the case of an affine right-hand side, of the form f(t,x) = A(t)x + b(t).

Inputs: [A, b, interval, y0, N]
A : callable (e.g. function, lambda), returning the matrix A at a given time instant.
b : callable (e.g. function, lambda), returning the vector b at a given time instant.
interval : integration interval, list of the form [t0, T].
y0 : initial condition, list or numpy array.
N : number of discrete timesteps

Outputs: [t, u]
t : vector of discrete time instants where the solution is approximated.
u : solution approximation at the discrete time instants.

"""

On rappelle que, pour un generique terme de droite 𝑓(𝑡, 𝑦), la méthode de Crank-Nicholson s’écrit
de la façon suivante:

⎧{
⎨{⎩

u𝑛+1 = u𝑛 + ℎ
2 (f(𝑡𝑛, u𝑛) + f(𝑡𝑛+1, u𝑛+1)) ,

u0 = u0 ,

étant u0 la donnée initiale.

[9]: def CrankNicholsonSystem(A, b, interval, y0, N) :
""" Solve ordinary differential equations using the Crank-Nicholson method.

NOTE: this method is limited to the case of an affine right-hand side, of␣
↪the form

f(t,x) = A(t)x + b(t).

Inputs: [A, b, interval, y0, N]
A : callable (e.g. function, lambda), returning the matrix A at a␣

↪given time instant.
b : callable (e.g. function, lambda), returning the vector b at a␣

↪given time instant.
interval : integration interval, list of the form [t0, T].
y0 : initial condition, list or numpy array.
N : number of discrete timesteps

Outputs: [t, u]
t : vector of discrete time instants where the solution is approximated.
u : solution approximation at the discrete time instants.

"""

8

number of solution components
d = y0.size

time step
h = (interval[1] - interval[0]) / N

time snapshots
t = np.linspace(interval[0], interval[1], N+1)

initialize the solution vector
u = np.empty([d, N+1])
u[:, 0] = y0

time loop
for n in range(N) :

B = (np.eye(d,d) - h/2 * A(t[n+1]))
r = u[:,n] + h/2 * (A(t[n])@u[:,n] + b(t[n]) + b(t[n+1]))
u[:, n+1] = np.linalg.solve(B, r)

return t, u

1.4 Partie 4
Choisir le pas de temps ℎ = ℎ∗, calculé dans la Partie 1. Analyser numeriquement la stabilité de
la méthode de Crank’Nicholson, en résolvant l’EDO pour les mêmes valeurs de ℎ considerées dans
la Partie 1.

Donner un commentaire sur le résultats obtenus. Est-ce que la méthode est inconditionallement
stable? (Commentaire 4)

[10]: prop = 0.1
Nh = int(T/(prop*h_ref))
t01, u01 = CrankNicholsonSystem(A, b, tsp, y0, Nh)

prop = 0.9
Nh = int(T/(prop*h_ref))
t09, u09 = CrankNicholsonSystem(A, b, tsp, y0, Nh)

prop = 1.0
Nh = int(T/(prop*h_ref))
t10, u10 = CrankNicholsonSystem(A, b, tsp, y0, Nh)

prop = 2.0
Nh = int(T/(prop*h_ref))
t20, u20 = CrankNicholsonSystem(A, b, tsp, y0, Nh)

9

[11]: fig, axs = plt.subplots(1, 4, sharey=True, figsize=(13,5))

axs[0].plot(t01, u01[0,:], '-o')
axs[0].plot(t01, u01[1,:], '-o')
axs[0].set_title(r"$h = 0.1 \ h^*$")

axs[1].plot(t09, u09[0,:], '-o')
axs[1].plot(t09, u09[1,:], '-o')
axs[1].set_title(r"$h = 0.9 \ h^*$")

axs[2].plot(t10, u10[0,:], '-o')
axs[2].plot(t10, u10[1,:], '-o')
axs[2].set_title(r"$h = h^*$")

axs[3].plot(t20, u20[0,:], '-o')
axs[3].plot(t20, u20[1,:], '-o')
axs[3].set_title(r"$h = 2 \ h^*$")

for ax in axs:
ax.set_xlabel('t', fontsize=16)
ax.set_ylabel('u_n', fontsize=16)
ax.legend(['u_1', 'u_2'], fontsize=16)
ax.grid(which='major', linestyle='--', linewidth=1)

plt.tight_layout()
plt.show()

1.4.1 Commentaire 4

La méthode de Crank-Nicholson est inconditionallement stable. Du coup, comme pour Euler rétro-
grade, on ne s’attend pas d’oscillation dans la solution, même si la valeur du pas de temps ℎ est
elevée. En fait, ceci est confirmé par les résultats numeriques, qui montrent des solutions précises

10

même pour ℎ = 2 ℎ∗.

1.5 Partie 5
Finalement, on s’interesse à étudier l’ordre de convergence des differentes méthodes analysées dans
ce test.

Résolvez l’EDO avec les méthodes de Euler progressif, Euler rétrograde et Crank-Nicholson pour
ℎ = [ℎ∗

4 , ℎ∗
8 , ℎ∗

16 , ℎ∗
32]. Considerez comme solution exacte celle obtenu avec la méthode de Crank-

Nicholson pour ℎ = ℎ∗
128 .

Calculez les erreurs par rapport à la solution exacte et dérivez (graphiquement) l’ordre de conver-
gence pour chaque méthode. Pour chaque valeur de ℎ, l’erreur relative est calculée de la manière
suivante

𝐸ℎ = ⎛⎜
⎝

∫𝑇
0 ||û(𝑡) − u(𝑡)||2 𝑑𝑡

∫𝑇
0 ||û(𝑡)||2 𝑑𝑡

⎞⎟
⎠

1
2

,

étant || ⋅ || la norme Euclidienne d’un vecteur, u(𝑡) la solution obtenue numeriquement au temps 𝑡
et û(𝑡) l’approximation (par la méthode de Crank-Nicholson) de la solution exacte au même temps.
L’integrale qui apparaît dans la définition de l’erreur peut être calculé en utilisant la fonction
simpson(u, x=t) de la librairie scipy.integrate, étant u la quantité à intégrer.

Donner un commentaire sur la base des résultats obtenus. Sont-ils en accord avec les attentes
théoriques? (Commentaire 5)

Aide: pour calculer la norme Euclidienne de la solution 𝑢 ∈ ℝ2×𝑁ℎ – étant 𝑁ℎ le nombre de pas
temporels – utiliser la commande norm = np.linalg.norm(u, axis=0).

[12]: # reference solution
prop = 1 / 2**8
Nh = int(T/(prop*h_ref))
t_ex, u_ex = CrankNicholsonSystem(A, b, tsp, y0, Nh)
u_ex_int = np.sqrt(simpson(np.linalg.norm(u_ex, axis=0)**2, x=t_ex))

convergence test
err_FE, err_BE, err_CN = [], [], []

for k in range(1,6):
prop = 1 / 2**k
_Nh = int(T/(prop*h_ref))

subsampled exact solution --> USE THIS ONE FOR THE ERROR CALCULATION
u_ex_cur = u_ex[:, ::2**(8-k)]

t, u_FE = forwardEulerSystem(f, tsp, y0, _Nh)
err_FE.append(np.sqrt(simpson(np.linalg.norm(u_FE - u_ex_cur, axis=0)**2,␣

↪x=t) / u_ex_int))

11

_, u_BE = backwardEulerSystem(A, b, tsp, y0, _Nh)
err_BE.append(np.sqrt(simpson(np.linalg.norm(u_BE - u_ex_cur, axis=0)**2,␣

↪x=t) / u_ex_int))

_, u_CN = CrankNicholsonSystem(A, b, tsp, y0, _Nh)
err_CN.append(np.sqrt(simpson(np.linalg.norm(u_CN - u_ex_cur, axis=0)**2,␣

↪x=t) / u_ex_int))

[13]: dts = np.array([h_ref / 2**k for k in range(1,6)])

plt.figure()
plt.loglog(dts, err_FE, '-o', label="FE")
plt.loglog(dts, err_BE, '-o', label="BE")
plt.loglog(dts, err_CN, '-o', label="CN")

plt.loglog(dts, (0.5 * err_BE[0] / dts[0]) * dts, '--',
color="black", label=r"$\sim h$")

plt.loglog(dts, (0.5 * err_CN[0] / dts[0]**2) * dts**2, '--',
color="tab:gray", label=r"$\sim h^2$")

plt.grid(which='major', linestyle='--', linewidth=1)
plt.grid(which='minor', linestyle='--', linewidth=0.5)

plt.legend(fontsize=16)
plt.xlabel(r"h", fontsize=16)
plt.ylabel("Relative error", fontsize=16)

plt.show()

12

1.5.1 Commentaire 5

À partir du graphe, on déduit que les méthodes d’Euler progressive et rétrograde convergent d’ordre
1 et la méthode de Crank-Nicholson converge d’ordre 2. Ceci est tout à fait cohérent avec les
résultats théoriques vus au cours.

2 Quelques petites questions finales (pas évaluées)
• What types of collaboration strategies did your group use?

– Work in pairs on different sections.
– Work individually on different sections.
– Work together on the same section with one notebook opened.
– Work together on the same section with multiple notebooks opened.
– Other (please specify).

• How effective was your collaboration strategy today? Please rate from 1 (not at all) to 5
(very effective).

• How supported did you feel by your TA during the session today? Please rate from 1 (not at
all) to 5 (very effective).

13

Please report your answers here. Thank you!

14

	Assignment 5: Èquations différentielles ordinaires
	Partie 1
	Commentaire 1
	Commentaire 2

	Partie 2
	Commentaire 3

	Partie 3
	Partie 4
	Commentaire 4

	Partie 5
	Commentaire 5

	Quelques petites questions finales (pas évaluées)

