Sol-Assignment 5 - Equations differentielles ordinaires
May 27, 2025

1 Assignment 5: Equations différentielles ordinaires

Avant de voir le code disponible de ce test et avant de commencer a rédiger vos
réponses, prenez le temps de réfléchir a4 la maniére dont vous pouvez organiser le
travail.

o Pensez a quelles parties du test utiliseront des fonctions écrites/résultats obtenus
dans les parties précédentes.
o Réfléchissez a la structure de votre code (vous pouvez faire un brouillon sur

papier).
o Reéfléchissez aux sections du cours qui vous seront utiles pour I’analyse de vos
résultats.
Dans lintervalle [0,7] avec T = 8, on considére le systéme linéaire d’équations différentielles

ordinaires (EDO) suivante

{ yi(t) = yl(t)—2y2(t)+e5tTt
yé(t) = 991@) — 10y2(t) —e5T

En posant les conditions initiales y;(0) = 1, y5(0) = 1, ¢a s’écrit sous la forme
y'(t) = Ay(t) + b(t) pour t e (0,77,
y(0) =y,

ou

N e N e

Soit A > 0 le pas de temps. Pour n € N, on pose t,, = nh, b,, = b(t,,) et on désigne par u,, une
valeur approchée de la solution exacte y(t,,) au temps t,,.

o

[1]: import numpy as np
from scipy.linalg import eig
from scipy.integrate import simpson

import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection



[2]:

import matplotlib as mpl
from ODESystemLib import forwardEulerSystem, backwardEulerSystem
np.set_printoptions(precision=4, suppress=True, linewidth=120)

# ODE problem setup

tsp = [t0, TI]

# REMARK: to be constistent with the implementation of the methods,
# A and b are defined as time-dependent functions,

even t1f in this case they are constant
lambda t : np.array([[i, -2], [9 , -10]1)
lambda t : np.array([np.exp(t/(5%T)), -np.exp(t/(5%T))])
lambda t, x : A(t)@ x + b(t)

oo %
I

yO = np.array([1, 1])

1.1 Partie 1

D’abord, on essaie résoudre le systéme d’EDO a l'aide de la méthode d’Euler progressive.

Sur la base de la théorie vue au cours, determiner le pas de temps maximale h* > 0 pour lequel la

méthode d’Euler progressive est stable. Justifier la réponse. (Commentaire 1)

Résoudre le systeme d’EDO pour h = 0.1h*, h = 0.9h* et h = h*, en utilisant la fonction suivante

(disponible dans ODESystemLib.py)

def forwardEulerSystem(fun, interval, yO, N)

"rr-Solve ordinary differential equations using the forward Euler method.

Inputs: [fun, interval, y0, NJ

fun : right-hand side term. It must be a callable (e.g. function, lambda),

that takes time (t) and solution (u) in input.
interval: integration interval, list of the form [tO, TJ.
y0: initial condition, list or numpy array.
N: number of discrete timesteps

Outputs: [t, ul

t : wector of discrete time instants where the solution <s approzimated.

u : solution approxzimation at the discrete time instants.

ninn

Dessiner le comportement des deux composantes de la solution dans le temps et donner un com-

mentaire sur la base des résultats obtenus. (Commentaire 2)



[3]: 1k, _ = eig(A(0))
print(£f"The eigenvalues of A are: {1k}")

h_ref = 2 / np.max(np.abs(1lk))
The eigenvalues of A are: [-1.+0.j -8.+0.j]

1.1.1 Commentaire 1

La méthode d’Euler progressive est explicite — il n’y a pas de systeme linéaire a résoudre — mais
par contre elle est seulement conditionellement stable.

Dans notre cas, les valeurs propres de A sont \; = —1 et A\, = —8; elles sont bien négatives, donc
la condition de stabilité sur h s’applique: comme p(A) = 8, la condition de stabilité nous donne

h<h*=

|

[4]: prop = 0.1
Nh = int(T/(prop*h_ref))
t01, u01 = forwardEulerSystem(f, tsp, yO, Nh)

prop = 0.9
Nh = int(T/(prop*h_ref))
t09, u09 = forwardEulerSystem(f, tsp, yO, Nh)

prop 1.0
Nh = int(T/(prop*h_ref))
t10, ul0 = forwardEulerSystem(f, tsp, yO, Nh)

prop = 2
Nh = int(T/(prop*h_ref))
t20, u20 = forwardEulerSystem(f, tsp, yO, Nh)

[6]: fig, axs = plt.subplots(l, 4, sharey=False, figsize=(13,5))

axs[0] .plot(t01, u01[0,:], '-o'
axs[0] .plot(t01, uwO1[1,:]1, '-0")
axs[0] .set_title(r"$h = 0.1 \ h™*$")

axs[1] .plot(t09, u09[0,:1, '-0o")
axs[1] .plot(t09, u09[1,:]1, '-0o')
axs[1] .set_title(r"$h = 0.9 \ h™*$")

axs[2] .plot(t10, ul0[0,:]1, '-o')
axs[2] .plot(t10, ul0[1,:]1, '-o')
axs[2] .set_title(r"$h = h™*$")

axs[3] .plot(t20, u20[0,:], '-0')



[6]:

axs[3]
axs[3]

for ax in axs:
ax.set_xlabel('$t$', fontsize=16)
ax.set_ylabel('$u_n$', fontsize=16)

ax.legend(['$u_1$', '$u_2$'], fontsize=16)
ax.grid(which='major', linestyle='--', linewidth=1)

plt.tight_layout ()

plt.show()

h=0.1h"

1.8

1.6

1.4+

Un

1.2+

1.0+

0.8

u1
uz

1.8 1

161

144

1.0

0.8

0.6

.plot(t20, u20[1,:], '-o')
.set_title(r"$h = 2 \ h~*$")

h=09h" h=h"

1.8 1
1.6 4
144

S 124

3
1.04
0.8 1

—— ux —— U3

0.6

Un

fig, axs = plt.subplots(l, 4, sharey=False, figsize=(13,5))

def plot_state(t, u, ax, title):

segments = np.concatenate([u.T[:-1, Nonel, u.T[1:, Nonell], axis=1)
plt.Normalize(tO, T)
lc = LineCollection(segments, cmap='plasma', norm=norm)

norm =

lc.set_array(t)
lc.set_linewidth(2)

line =

ax.add_collection(lc)

ax.set_xlim(min(u[0]) - 0.05, max(u[0]) + 0.05)
ax.set_ylim(min(u[1]) - 0.05, max(ul[1]) + 0.05)

ax.set_title(title)

ax.set_xlabel('$u_1$', fontsize=16)
ax.set_ylabel('$u_2$', fontsize=16)

ax.grid(which='major', linestyle='--', linewidth=1)

return

plot_state(t01, u01l, axs[0], r"$h = 0.1 \ h™*$")

1.25

1.00

0.25 1

0.00 -

—=0.25 1

—0.50




plot_state(t09, u09, axs[1], r"$h = 0.9 \ h™*$")
plot_state(t10, ul0, axs[2], r"$h = h™*$")
plot_state(t20, u20, axs[3], r"$h = 2 \ h™*$")

# Add a shared colorbar outside the figure

cbar_ax = fig.add_axes([0.92, 0.15, 0.02, 0.7])
norm = plt.Normalize(tO, T)

sm = mpl.cm.ScalarMappable(cmap="plasma", norm=norm)
sm.set_array([])

cbar = fig.colorbar(sm, cax=cbar_ax)
cbar.set_label('Time', fontsize=16)

fig.tight_layout(rect=[0, 0, 0.9, 11)
plt.show()

/tmp/ipykernel_110650/3983593375.py:33: UserWarning: This figure includes Axes
that are not compatible with tight_layout, so results might be incorrect.
fig.tight_layout(rect=[0, 0, 0.9, 11)

h=0.1h" h=09h" h=h" w7 h=2h"

1.4
1.4 1.6 -

131 12 1.4

12+

uz
uz
uz

1.0

uz
) B
Time

10

107 081
0.8

0.6 0.6

; : : ; . ; : ; : ; : : ; ;
1.00 1.25 150 1.75 1.00 1.25 150 1.75 1.00 1.25 150 1.75 0 2
u1 ul ul u1 1e6

1.1.2 Commentaire 2

On observe que la solution calculée a l'aide de la méthode d’Euler progressive ne présente pas
d’oscillations si la valeur de h est suffisamment petite, par exemple h = 0.1 h*. Cependant,
des oscillations numériques commencent a apparaitre si h s’approche de h*, par exemple pour
h = 0.9 h*, méme si celles-ci s’atténuent a mesure que la solution évolue dans le temps. Lorsque
h = h*, Pamplitude des oscillations reste constante, et si h > h* (par exemple h = 2 h*), les
oscillations s’amplifient et la solution prend tres rapidement des valeurs tres élevées.

1.2 Partie 2

Répeter la Partie 1, mais en considerant la méthode d’Euler rétrograde.

Pour approximer numeriquement la solution, la fonction suivante est mise a disposition dans la



librairie ODESystemLib.py:

def backwardEulerSystem(A, b, interval, yO, N)
" Solve ordinary differential equations using the backward Euler method.

NOTE: this method is limited to the case of an affine right-hand side of the form
f(t,z) = A(t)z + b(t).

Inputs: [A, b, interval, y0, NJ
A : callable (e.g. function, lambda), returning the matriz A at a given time instant.
b : callable (e.g. function, lambda), returning the vector b at a given time instant.
interval : integration interval, list of the form [tO, TJ.
y0 : wnitial condition, list or numpy array.
N : number of discrete timesteps

Outputs: [t, u]
t : wector of discrete time instants where the solution is approzimated.

u : solution approximation at the discrete time instants.
ninn

Donner un commentaire sur les résultats obtenus. En particulier, qu’est qu’on peut dire par rapport
a la stabilité de cette méthode? (Commentaire 3)

[7]: prop = 0.1
Nh = int(T/(prop*h_ref))
t01, u0l = backwardEulerSystem(A, b, tsp, yO, Nh)

prop = 0.9
Nh = int(T/(prop*h_ref))
t09, u09 = backwardEulerSystem(A, b, tsp, yO, Nh)

prop 1.0
Nh = int(T/(prop*h_ref))
t10, ul0 = backwardEulerSystem(A, b, tsp, yO, Nh)

prop = 2
Nh = int(T/(prop*h_ref))
t20, u20 = backwardEulerSystem(A, b, tsp, yO, Nh)
[8]: fig, axs = plt.subplots(l, 4, sharey=True, figsize=(13,5))
axs[0] .plot(t01, uw01([0,:], '-0o")
axs[0] .plot(t01, uwO1[1,:1, '-o")
axs[0] .set_title(r"$h = 0.1 \ h™*3$")

axs[1] .plot(t09, u09[0,:]1, '-0')



axs[1] .plot(t09, u09[1,:], '-o")
axs[1] .set_title(r"$h = 0.9 \ h™*3$")

axs[2] .plot(t10, ul0[0,:], '-0o')
axs[2] .plot(t10, ul0[1,:]1, '-0o")
axs[2] .set_title(r"$h = h™*$")

axs[3] .plot(t20, u20[0,:], '-0o")
axs[3] .plot (t20, u20[1,:], '-o'
axs[3] .set_title(r"$h = 2 \ h™*$")

for ax in axs:
ax.set_xlabel('$t$', fontsize=16)
ax.set_ylabel('$u_n$', fontsize=16)
ax.legend(['$u_1$', '$u_2$'], fontsize=16)
ax.grid(which='major', linestyle='--', linewidth=1)

plt.tight_layout ()

plt.show()
h=0.1h" h=09h" h=h h=2h
184
—— U1 —— U1 —— U1 ——
uz uz uz uz
161
144
i~ i~ i~ i~
S 3 3 3>

124

1.0

1.2.1 Commentaire 3

La méthode d’Euler rétrograde est inconditionallement stable, c-a-d elle est stable pour toute valeur
de h > 0. Ceci peut étre déduit en régardant les solutions obtenues, qui sont accurées et qui ne
presentent pas d’oscillations, méme pour des valeurs de h assez élevées (e.g. h =2 < h*).

1.3 Partie 3

Ecrire une fonction qui implemente la méthode de Crank-Nicholson, pour résoudre des équations
différentielles ordinaires linéaires, c-a-d avec f(t,z) = A(t)xz + b(t). La fonction doit avoir la
structure suivante:



def CrankNicholsonSystem(A, b, interval, yO0, N)
"rr-Solve ordinary differential equations using the Crank-Nicholson method.

NOTE: this method is limited to the case of an affine right-hand side, of the form f(t,z)

Inputs: [A, b, interval, y0, NJ
A : callable (e.g. function, lambda), returning the matriz A at a given time instant.
b : callable (e.g. function, lambda), returning the vector b at a given time instant.
interval : integration interval, list of the form [tO, TJ.
y0 : initial condition, list or numpy array.
N : number of discrete timesteps

Outputs: [t, ul
t : vector of discrete time instants where the solution is approxzimated.

u : solution approximation at the discrete time instants.
nnn

On rappelle que, pour un generique terme de droite f(t,y), la méthode de Crank-Nicholson s’écrit
de la facon suivante:

h
U, =4, + 5 <f(tn7 un) + f(tn+17 un+1)> )

uo = uO ,
étant ug la donnée initiale.

[9]: def CrankNicholsonSystem(A, b, interval, yO, N)
"h-Solve ordinary differential equations using the Crank-Nicholson method.

NOTE: this method is limited to the case of an affine right-hand side, of,
~the form

flt,z) = A(t)x + b(t).

Inputs: [A, b, interval, y0, NJ

A : callable (e.g. function, lambda), returning the matriz A at ay
»given time instant.

b : callable (e.g. function, lambda), returning the vector b at a
»given time instant.

interval : integration interval, list of the form [tO, TJ.

y0 : initial condition, list or numpy array.

N : number of discrete timesteps

Outputs: [t, u]
t : wector of discrete time instants where the solution is approximated.

u : solution approxzimation at the discrete time instants.
nimnn



# number of solution components

d = yO0.size

# time step

h = (interval[1] - interval[0]) / N

# time snapshots
t = np.linspace(interval[0], interval[1], N+1)

# initialize the solution wvector
u = np.empty([d, N+11)
ul:, 0] = yO

# time loop
for n in range(N)

B = (np.eye(d,d) - h/2 * A(t[n+1]))
r = ul:,n] + h/2 * (A(t[nD)Cul:,n] + b(tln]l) + b(tln+1]))
ul:, n+1] = np.linalg.solve(B, r)

return t, u

1.4 Partie 4

Choisir le pas de temps h = h*, calculé dans la Partie 1. Analyser numeriquement la stabilité de
la méthode de Crank’Nicholson, en résolvant 'EDO pour les mémes valeurs de h considerées dans
la Partie 1.

Donner un commentaire sur le résultats obtenus. Est-ce que la méthode est inconditionallement
stable? (Commentaire 4)

[10]: prop = 0.1
Nh = int(T/(prop*h_ref))
t01, u01 = CrankNicholsonSystem(A, b, tsp, yO, Nh)

prop = 0.9
Nh = int(T/(prop*h_ref))
t09, u09 = CrankNicholsonSystem(A, b, tsp, yO, Nh)

prop = 1.0
Nh = int(T/(prop*h_ref))
t10, ul0 = CrankNicholsonSystem(A, b, tsp, yO, Nh)

prop = 2.0
Nh = int(T/(prop*h_ref))
t20, u20 = CrankNicholsonSystem(A, b, tsp, yO, Nh)



[11]:

fig, axs = plt.subplots(l, 4, sharey=True, figsize=(13,5))
axs[0] .plot(t01, u01[0,:]1, '-o
axs[0] .plot(t01, uw01[1,:], '-o")

axs[0] .set_title(r"$h = 0.1 \ h™*3$")

axs[1] .plot(t09, u09[0,:]1, '-o
axs[1] .plot(t09, u09[1,:1, '-o")
axs[1].set_title(r"$h = 0.9 \ h~*$")
axs[2] .plot(t10, ul0[0,:]1, '-0o')
axs[2] .plot(t10, ul0[1,:], '-0o')
axs[2] .set_title(r"$h = h™*$")

axs[3] .plot(t20, u20[0,:1, '-o")
axs[3] .plot (t20, u20[1,:], '-o'
axs[3] .set_title(r"$h = 2 \ h™*$")

for ax in axs:
ax.set_xlabel('$t$', fontsize=16)
ax.set_ylabel('$u_n$', fontsize=16)
ax.legend(['$u_1$', '$u_2$'], fontsize=16)
ax.grid(which='major', linestyle='--', linewidth=1)

plt.tight_layout ()

plt.show()
h=0.1h" h=09h" h=h h=2h
187 7
—— U1 —— Uy —— U7 —— 1
u uz uz u
16 ] E E
144
i~ i~ i~ i~
S 3 3 3>

12

1.0 4

0.8 1

1.4.1 Commentaire 4

La méthode de Crank-Nicholson est inconditionallement stable. Du coup, comme pour Euler rétro-
grade, on ne s’attend pas d’oscillation dans la solution, méme si la valeur du pas de temps h est
elevée. En fait, ceci est confirmé par les résultats numeriques, qui montrent des solutions précises

10



[12]:

méme pour h = 2 h*.

1.5 Partie 5

Finalement, on s’interesse a étudier 'ordre de convergence des differentes méthodes analysées dans
ce test.

Résolvez TEDO avec les méthodes de Euler progressif, Euler rétrograde et Crank-Nicholson pour
h = [%, %, %, 2—2] Considerez comme solution exacte celle obtenu avec la méthode de Crank-

Nicholson pour h = {55.

Calculez les erreurs par rapport a la solution exacte et dérivez (graphiquement) l'ordre de conver-
gence pour chaque méthode. Pour chaque valeur de h, ’erreur relative est calculée de la maniere
suivante

1

T ~ 2
B, - (fo () —u()| dt) |

T

by Na@)I* dt

étant || - || la norme Euclidienne d’un vecteur, u(t) la solution obtenue numeriquement au temps ¢
et u(¢) Vapproximation (par la méthode de Crank-Nicholson) de la solution exacte au méme temps.
L’integrale qui apparailt dans la définition de l'erreur peut étre calculé en utilisant la fonction
simpson(u, x=t) de la librairie scipy.integrate, étant u la quantité a intégrer.

Donner un commentaire sur la base des résultats obtenus. Sont-ils en accord avec les attentes
théoriques? (Commentaire 5)

Aide: pour calculer la norme Euclidienne de la solution u € R**Nn — étant N,, le nombre de pas

temporels — utiliser la commande norm = np.linalg.norm(u, azis=0).

# reference solution

prop = 1 / 2x%8

Nh = int(T/(prop*h_ref))

t_ex, u_ex = CrankNicholsonSystem(A, b, tsp, yO, Nh)

u_ex_int = np.sqrt(simpson(np.linalg.norm(u_ex, axis=0)**2, x=t_ex))

# convergence test
err_FE, err BE, err_ CN = [1, [1, []

for k in range(1,6):
prop = 1 / 2x%xk
_Nh = int(T/(prop*h_ref))

# subsampled exact solution —--> USE THIS ONE FOR THE ERROR CALCULATION
u_ex_cur = u_ex[:, ::2xx(8-k)]

t, u_FE = forwardEulerSystem(f, tsp, yO, _Nh)

err_FE.append(np.sqrt(simpson(np.linalg.norm(u_FE - u_ex_cur, axis=0)**2,
wx=t) / u_ex_int))

11



_, u_BE = backwardEulerSystem(A, b, tsp, yO, _Nh)
err_BE.append(np.sqrt(simpson(np.linalg.norm(u_BE - u_ex_cur, axis=0)**2,,
~x=t) / u_ex_int))

_, u_CN = CrankNicholsonSystem(A, b, tsp, yO, _Nh)
err_CN.append(np.sqrt(simpson(np.linalg.norm(u_CN - u_ex_cur, axis=0)**2,,
~x=t) / u_ex_int))

[13]: dts = np.array([h_ref / 2*xk for k in range(1,6)])

plt.figure()

plt.loglog(dts, err_FE, '-o', label="FE")
plt.loglog(dts, err_BE, '-o', label="BE")
plt.loglog(dts, err_CN, '-o', label="CN")

plt.loglog(dts, (0.5 * err_BE[0] / dts[0]) * dts, '--',
color="black", label=r"$\sim h$")

plt.loglog(dts, (0.5 * err_CN[0] / dts[0]**2) * dts**2, '--',
color="tab:gray", label=r"$\sim h~2$")

plt.grid(which='major', linestyle='--', linewidth=1)
plt.grid(which='minor', linestyle='--', linewidth=0.5)

plt.legend(fontsize=16)
plt.xlabel(r"$h$", fontsize=16)
plt.ylabel("Relative error", fontsize=16)

plt.show()

12



102

103

104

Relative error

103

1.5.1 Commentaire 5

A partir du graphe, on déduit que les méthodes d’Euler progressive et rétrograde convergent d’ordre
1 et la méthode de Crank-Nicholson converge d’ordre 2. Ceci est tout a fait cohérent avec les
résultats théoriques vus au cours.

2 Quelques petites questions finales (pas évaluées)

o What types of collaboration strategies did your group use?

— Work in pairs on different sections.

— Work individually on different sections.

— Work together on the same section with one notebook opened.

— Work together on the same section with multiple notebooks opened.
— Other (please specify).

o How effective was your collaboration strategy today? Please rate from 1 (not at all) to 5
(very effective).

o How supported did you feel by your TA during the session today? Please rate from 1 (not at
all) to 5 (very effective).

13



Please report your answers here. Thank you!

14



	Assignment 5: Èquations différentielles ordinaires
	Partie 1
	Commentaire 1
	Commentaire 2

	Partie 2
	Commentaire 3

	Partie 3
	Partie 4
	Commentaire 4

	Partie 5
	Commentaire 5


	Quelques petites questions finales (pas évaluées)

